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Abstract: The usage of non-contact machine tools in metal cutting industries is increasing
exponentially in recent times due to the advent of super hard work materials. The fiercely competitive
manufacturing industries find the traditional trial-and-error method, not only challenging and time
consuming but also economically nonviable in acquiring superior quality of end products produced
from such materials. This paper presents a more accurate prediction method for surface roughness
values by using Networked Fuzzy Intelligent System (N-FIS) in combination with the commercial
software tools, Matlab and Neuro-Dimension Network. Experiments were conducted on manganese
molybdenum pressure vessel plates to validate the robustness of the developed model in forecasting the
surface roughness values. The predicted results were found to be reasonably accurate with an error
percentage well below 10% for almost all runs at the prediction stage. On the other hand, the
experimental validation results for selected critical runs were found to be extremely promising with
results of an accuracy of more than 90%. It was concluded that the setting of proper network algorithm
and rules, can actually help the industry to perform laser machining better by saving huge waste
materials by employing the approach presented in this paper as compared to the traditional trial-and-
error method.
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INTRODUCTION

Conventional materials processing modelling techniques are being challenged especially for complex and
advanced machine tools which process high number of processing parameters. Thus, many intelligent
approaches are being embarked to perform diligent quality and performance prediction. In this paper, the
Networked fuzzy intelligent system (N-FIS) was successfully used in this research to predict the cut quality of
manganese molybdenum (MnMo) boiler plate utilizing complex laser machining process. In laser machining,
surface roughness is one of the most important quality evaluation factors, generally dependent upon the physical
and mechanical properties of the materials being cut, material thickness, focal length, standoff distance, cutting
speed, the type of cutting gas and gas pressure.

In addition to this, the nonlinear behavior of the laser-material interactions also plays a significant role in
forming the final surface profile and the resultant geometry of the machined micro-features. Moreover, process
modelling with huge number of parameters using conventional, analytical and numerical methods too poses a
substantial challenge. By modelling the complex material processing by N-FIS, the traditional trial-and-error or
one factor at a time (OFAT) approach which are not only be costly but also time consuming could very well be
avoided. Thus, the ability to predict surface roughness quality accurately and effectively by this modelling
technique ultimately improves the engineering of component machining, reducing significant machining cost up
to 70% of the overall manufacturing cost (Arata Yoshiaki, et al., 1979; Zhang, W., et al., 2001; Yousef, F., et
al., 2003; Ming-Jong Tsaia, et al., 2008). Recent research activities in precision machining shows that artificial
neural network (ANN) has powerful pattern classification and recognition which can be well suited for problems
whose solutions require knowledge that is difficult to specify by human (Ciuranaa J., G. Ariasb, and T. Ozel,
2009). Fuzzy rule acquisition method was also used for tool wear estimation using radial basis networks to find
the optimal combined rules to compose fuzzy reasoning mechanism (Xiaoli Li, et al., 2004). A CNC tool wear
detection using neuro-fuzzy classification system has been successfully investigated by employing three
different types of membership function (Hahn-Ming Lee, et al., 1999). Tool-failure detection system was
analytically modelled for turning of metal matrix composite (Kishawy, H.A., et al., 2004). Model using neuro-
adaptive learning techniques which is similar to those of neural network was originally presented by Jang (Milos
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Madic and Miroslav Rodovanovic, 2012). Hybrid genetic and SVD methods were also used to design adaptive
networks (Nariman-Zadeh, N., et al., 2006) and adaptive network fuzzy inference system to predict surface
roughness in end milling (Ship-Peng Lo, 2006). The same network was reported to have also successfully used
to predict square hole profiles (Fung-Huei Yeh, et al., 2006). Optimization of CO, laser machining was
performed by combining Taguchi and Neural Network (Ching Been Yang, et al., 2012) and parameter
optimization was also reported to have been performed onto non-vertical laser cutting (Chen Jimin, et al., 2007).
ANN-Hybrid model was employed in modelling of Laser Assisted Oxygen Cutting of mild steel plate (Chaki,
S., and S. Ghosal, 2011). Grey-Fuzzy methodology was employed successfully in modelling of multiple quality
investigation of laser cutting (Pandey, A.K. and V. K. Dubey, 2012), while graphical user interface (GUI)
modelling was developed to ease the artificial intelligence modelling phases (Sivarao, Peter Brevern, and
N.S.M. El-Tayeb, 2009). Reviews of Al applications in laser cutting qualities are expressed as explicit nonlinear
functions of the laser control parameters to improve the prediction accuracy (Chaudhari, P.S., et al., 2012).

In general, the selection of optimum machinability data for a specific machine tool plays the most important
role in manufacturing, as the process control parameters of a machine tool are not always precisely understood.
Thus, it becomes increasingly difficult to recommend the optimum values with a huge variety of expensive
materials in the market. As to propose a new solution to these challenges, this research work presents the
adoption of Networked Fuzzy Intelligent System (N-FIS) to model and control critical machining parameters of
a CO, laser cutting machine desiring excellent surface roughness of MnMo boiler plates. The schematic diagram
of laser cutting principle shown in Figure 1 clearly indicates the position and profiling of a work while the real
cutting of CO, laser on a sacrificial table is shown in Figure 2.
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Fig. 1: CO; laser cutting.

Fig. 2: Profiling of CO, laser on sacrificial table
MATERIALS AND METHODS
Selection of Materials and Process Control Parameters:
For conducting the experimental runs, grade B, manganese-molybdenum (MnMo) pressure vessel plates

with tensile Strength of 690 MPa were used. Seven process controlling parameters, viz., the standoff distance,
focal distance, gas pressure, power, cutting speed, frequency, and duty cycle were selected for the investigation.
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The gas nozzle with 0.5 mm diameter and a focused beam diameter of 0.25 mm were used for the study. The
dimensions of the prepared plate were kept as 1.2 x 0.7 m (length x width). A total of 128 experiments were
conducted based on the DOE matrix developed with 2% full factorial design, where, k represents number of
factors (7 independent process control parameters) and 2 represents level (low, coded as -1 and high, coded as
+1). The units, symbols, and the limits of the factors (control parameters) are given in Table 1.

Table 1: Process control parameters and their limits

No. Control Parameter Unit Notation Low High
1 Power w P 2500 2800
2 Cutting speed RPM S 800 1200
3 Frequency Hz F 800 1000
4 S.0D mm SOD 1 15
5 F.D mm FD 0 1

6 Pressure bar Pr 0.7 1

7 Duty cycle % D 40 80

All experimental data sets and the objective functions were programmed into the networked fuzzy system
on Matlab platform. The details of the laser machine, machining condition (parameter control), the apparatus
used for data collection (‘Ra’ observation), work material, and data collection interpretation are given in Table
2.

Table 2: Specification for the Laser Machine

Laser machine Model Helius Hybrid 2514 CO, Laser

Controller FANUC Series 160 i-L

Maximum capacity 4 kW

Laser source N, (55%), He (40%) & CO, (5%) with purity 99.995%
Gas mixture Pressure 3 bar (max)

The experimental procedures, data collection, analysis, etc. are conducted as per the standard
recommendations of ‘Laser Cutting of Metallic Materials’ German Standard, DIN 2310-5. Mitutoyo surftest
SJ301 with a sampling range of 0.8 — 8 was used for all profile measurements. This work comprises of N-FIS
modelling methodology and parametric methodology. The initial work was focused on how the Fuzzy is
networked into intelligent system, and later to determine how the entire experimental work was performed to
achieve the outlined research objectives. The modelling methodology was used for screening & modelling
which caters the initial work in establishing the N-FIS model. On the other hand, parametric methodology was
designed for e eventual full experimental and validation purpose.

Modelling:

The modelling process shown in Figure 3 was initiated by executing networked fuzzy parameter to select
‘membership type’ together with its ‘optimization method’. The epoch number is then simulated to prevent
over-fitting, where this will optimize and suggest the best epoch number for the selected settings and model.
Later, the data is trained to observe the root mean square error (RMSE) and average percentage error (APE)
values to the desired satisfactory level. Once the desired value is achieved, the modelling would be finalized and
machining parameters can be fully loaded. The comparative of the predicted vs. observed can be displayed upon
demand. The input laser parameters can be tested for interpolation and extrapolation levels to validate the
trained model.
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Fig. 3: Modelling Methodology

Parametric Process:

The employed parametric process is shown in the form of workflow (Figure 4). It involves few sequential
primary works where, the work materials supplied and sponsored by the boiler consultancy industry, Kara Pte.
Ltd. was screened according to machine-material suitability. Then after, the processing parameters have been
screened by fractional factorial analysis to discard non-contributing parameters out of 14 available on the
machine. The analysis found seven significant parameters which are classified as design parameters. Those
significant parameters were then explored to attain bracket values to capture parameter work range. The DOE
experimental matrix was then established by 2% full factorial design. The experimentations were then
randomized to cross run with their run orders preventing bias results and to test the machine repeatability by
providing huge differences in transverse movement between laser head and sacrificial table. All the experiments
and observations were carried out based standard recommendations of DIN 2310-5 and DIN EN 1SO 9013:2000
respectively to fit the requirement of sponsored industry. The observed results were then analyzed for
unexpected / unintended errors. Thus, the experimentation sets with huge variance in response is most likely to
be caused by technical errors and they were repeated to ensure it does not caused by human error. Once the 128
experimental values were satisfied, 60% of them were used for training and test the network fitness while
remaining 40% were used for testing and validation. Thus, eight different network architectures were tested with
various sets of architectures on network simulating software, namely Neuro-Dimension where, the seven input
parameters were maintained with singleton output. The network with lowest RMSE value was then selected as
final and optimized for the use of this research. Then after, 15 predictions with the intervals of 10 were
experimentally validated to confirm the ability of developed intelligent model in achieving the individual
percentage accuracy above 90% as targeted at the beginning of this study.

Hybrid Artificial Intelligence-Expert System:

Two artificial intelligent tools were hybridized to gain the beneficial/strength of them both. Neural tool
which is widely known of having the ability to train the data sets could provide the best network for the desired
responses with the most minimum errors by taking into account the weights, neurons and their iterations. On the
other hand, Fuzzy Logic (FL) which is also known as expert system is able to create the functions between
fields to provide best responses based on rules provided by field expert. Knowing the limitation on Fuzzy which
could not train the data while ANN limits the human intervention in setting the rules, the combination added of
Fuzzy and NN is taken advantage by customizing their behavior and capability.

Fuzzy Logic:

Fuzzy logic (FL) suits very well in defining the relationship between inputs and desired outputs of a system,
where its extra ordinary controlling and reasoning capability made its way to the application of many complex
industrial systems for precise modelling under various assumptions and approximations. Fuzzy system consist
few inputs, output(s), set of predefined rules and a defuzzification method with respect to the selected fuzzy
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inference system. Mamdani Fuzzy Inference System (FIS) is the most known or used in developing fuzzy
models. The output of the system is generally defuzzified resulting fuzzy sets are combined using aggregation
operator from the consequent of each rule of the input.
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Fig. 4: Experimental methodology

A single if-then rule is written as;

IF“X”is A, THEN “Y” is B
or,
{IF (premise, ) THEN (consequent; )},

where, A and B are linguistic values defined by fuzzy sets on the ranges; X and Y, respectively. The if-part
of the rule “x is A” is called the antecedent or premise, while the then-part of the rule “Y is B” is called the
consequent or conclusion. The defuzzification method (Figure 5) applied onto a fuzzy model based on three
different conditions.

In this research, the input membership function (Figure 6) was divided into two linguistic values, where
each input denoted as low and high respectively. The determination of the membership function is done on
Matlab. This technique enabled excellent model development for non-linear process in which the rules were
automatically generated under adaptive network environment.
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Fig. 6: Input MF for fuzzy model

The membership function and set of rules were fed into the system to predict the responses. Each rule in the
system is considered very important and critical to generate the predictions in numeric form. The snapshot of the
membership function plot (Figure 6) and dynamic mode rules fed into the system (Figure 7) is possible to be
visualized for customization. Knowing the non-linear behavior of laser processing, 128 self-generated rules
were set to ensure the desired outputs are reliable and satisfactory.
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Fig. 7: Part of the self-generated fuzz rules

Neuro Dimension Network:
Neuro-Dimension Network was programmed for automatic reasoning to enhance the modelling competence

as compared to their individual capability. It was able to model non-linear system, robustness to noisy data, and
generic modelling capability. Since the prediction of the cut quality was the primary aim, the Neuro- Dimension
Network models were initially optimized based on training and testing over all the observed data sets before the
integration on different platform. The complete experimental data sets have been used to train the network,
where the learning process was stopped after 500 iterations. The number of neurons and layers were calculated
automatically based on the network training error. The first step of the analysis is to normalize the raw input
data to values between 3 and 40 is shown by (1).

X; :L(di —d.)+3

' d_ —d
max min (1)
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The drax @nd doi are the maximum and minimum inputs and di js i input. Input of i™ neuron on hidden

layer Iyi, calculated by,

= )

Wy

M is number of neurons in input layer and is numerical weight value of the connection between the two

neurons. % is i" normalized output from the input layer. The output of the i™ neuron on hidden layer y; is to be
calculated by applying an activation function to the summed input of that neuron. The output of i neuron on
hidden layer then appear as,

1

Y = f(lyi):m

@)
The s is the slope of the sigmoid function and the values received by the output layer . are outputs of the
hidden and input layers.

M N
1Zi =) WX +Y W, Y,
i=1 i=1 (4)
. . . W, W .
M and N are the numbers of neurons in the input and hidden layers. "% and ¥* are corresponding

weights from the input to the output layer and from hidden layer to output layer. The actual output in the output
layer is calculated by applying the same sigmoid function as applied for hidden layer.

Z = f(lzi) (5)
Error between the desired and actual output in the output layer is given by

5zi = fl(lzi)(Ti_Zi) (6)

Where, T is the i™ training input to the neuron and f is the derivative of the sigmoid function. For each
. oy .
neuron on the hidden layer, the error, ' is
L
5yi = f(l yi);5ziwyz

where,

)

the L is number of neurons in the output layer.

A total of eight nearly possible networks were trained and tested (Figure 8) for the output based on fitness
and test error comparisons among them. Networked Fuzzy intelligent system has been developed by importing a
trained and optimized network into Matlab environment to predict the surface roughness. The network is able to
predict data using Networked Fuzzy Intelligent System synchronizing hybrid and back propagation optimization
method. Seven corresponding input parameters namely; power, speed, pressure, focal distance, standoff
distance, frequency, duty cycle were used to investigate quality of surface roughness by training and validation.
The optimized 7-13-1 network (Figure 9) has been established upon few critical screening stages of other tested
networks considering their respective RMSE values.
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Fig. 9: The 7-13-1 architecture with 7 inputs, 1 hidden layer with singleton output

The specially developed Neuro-Dimension functions provides the fullest output of rule to network
emerging capability in few simple steps even for a complex process such as laser machining. The key features of
the networked fuzzy output are; over-fitting, surface modelling, rule viewer, membership function and
comparative scatter plot. It is programmed to train 5.0mm thickness work material and predict their responses
using those seven inputs. The ability to predict the data accurately is based on the setting used to train the data.

RESULTS AND DISCUSSION

The experimentally observed surface roughness (Ra) values were fed into the optimized 7-13-1 N-FIS
network to validate the network’s ability in predicting as desired. Thus, it was programmed in Matlab software
to generate the graph (Figure 10) that compares the observed and predicted values. The highest percentage error
between the observed and predicted values was found to be less than 11%. Thus the model was considered to be
in accepted range and 15 additional predictions were made for experimental validation within the range of
experimental values. Setting the machining parameters to the modelling environment, the work material was cut
to experimentally validate the responses. The values obtained are tabulated in Table 3. As clearly seen from the
Table 3 the individual experimental validation percentage were found to be all well below 10 % while the
average deviation and percentage error were 4.72 and 0.48 microns respectively. The bar chart that plots the
predicted and experimental validation results for selected experiment number is shown in Figure 11. The
experiments were purposely selected with huge difference in their parametric values so that the robustness of the
model could be tested. Even then, the predictive results as compared to the experimentally validated resulted in
good agreement conforming to the results gain in predicting historic data gained from initial experimentations.
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Fig. 10: Observed versus networked fuzzy model predicted results for surface roughness

Table 3: Numeric of selected modelling and validation data

Predicted | Validation | Deviation |Exp'n Validation
Run | Expn. No. . . .
(micron) (micron) (micron) Error (%)
1 1 1.99 1.85 0.14 7.30
2 10 6.32 626 0.06 1.02
3 20 597 551 046 837
4 30 7.95 8.25 0.30 364
5 40 431 4.38 007 165
6 50 583 556 027 4.86
7 60 325 342 017 497
8 70 7.38 6.85 053 774
9 80 4.04 415 011 2.58
10 90 574 592 0.18 3.04
11 100 4.47 4.09 0.38 9.29
12 110 4.86 4.59 0.27 5.88
13 120 442 4.51 0.09 2.00
14 125 6.58 6.24 0.34 545
15 128 334 345 011 319
Total Average: 0.48 4.72
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Fig. 11: Manual plot of N-FIS modeled vs. experimentally validated values for surface roughness.

The research results/output therefore, can be considered to be beneficial due to the fact that the prediction
accuracy achieved from the method presented in this paper was more than 90 %, which is about 10% better than
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the expected values prescribed by DIN and TRIUMPF German Standards. From the comparative analysis, it was
confirmed that the developed networked fuzzy modelling with precise Fuzzy expert rules and better neuro
network selection with proper connections and algorithms could make precise predictions and validations which
has practically proved that this method could be considered as a much better intelligent modelling approach. The
standalone neural network and fuzzy expert systems hence can very well be challenged by this proposed
networked fuzzy system in predicting the quality of materials processing on advanced non-linear machine tools
with huge number of controllable parameters.

Conclusion:

This work confirmed the superiority of Networked Fuzzy Intelligent System (N-FIS) in predicting surface
roughness of MnMo boiler plates processed by CO, laser cutting machine. Since laser-cutting qualities are
expressed as explicit nonlinear functions of the laser control parameters which often requires highly skilled
labor combined with vast knowledge in work materials, their physical and mechanical properties and behavior
the proposed modelling technique could be very well beneficial to the Industry. However, this method has only
been used in a preliminary level by most of the industries. It can be further explored to establish robust model
for wide range of applicable advanced materials in future.
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